

LA-UR-21-22755

Approved for public release; distribution is unlimited.

Title: High-efficiency High-energy Photon Radiography Panels

Author(s): Moretti, Frederico

Bourret, Edith Derenzo, Stephen Perrodin, Didier Watson, Scott Avery Winch, Nicola M. Marshall, Matthew Nagarkar, Vivek Singh, Bipin

Intended for: NSARD Review Meeting, April 19-23 2021

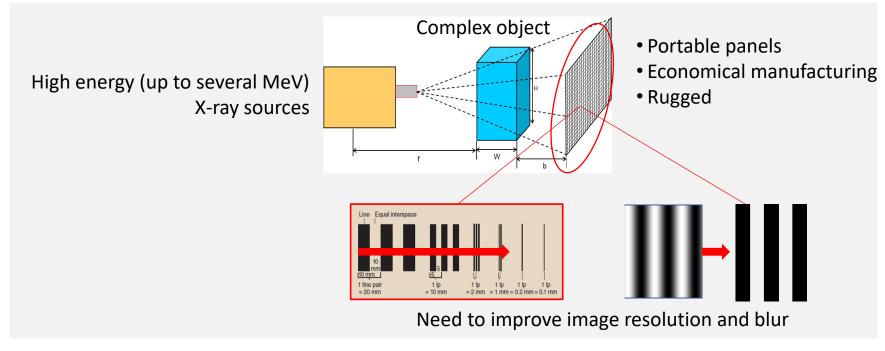
Issued: 2021-03-19

High-efficiency High-energy Photon Radiography Panels

TEAM

LBNL: Federico Moretti (PI), Edith Bourret, Stephen Derenzo, Didier Perrodin

LANL: Scott Watson, Nicola Winch


RMD Inc.: Matthew Marshall, Vivek Nagarkar, Bipin Singh

Introduction: High-Energy Radiography

1-15 MeV photons are used for their capacity to penetrate dense and large objects, with applications from cargo scanning to security

Currently employed high-energy radiography panels technologies:

Efficient radiography panels at reasonable production costs?

Project Goal and Approach

Goal:

- Demonstrate a developmental path towards production of efficient radiography panel for high energy radiography while keeping the production cost reasonable.
- Fulfill some needs identified in the research thrust GOR 2/K/b "Diagnostics systems".

Approach:

- Combination of simulations and experimental work and work with:
 - 1) LANL to ensure application driven requirements are integrated into the design options
 - 2) Radiation Monitoring Devices, Inc. (RMD) to provide prototype materials in columnar films for testing.

Challenge:

- Sources of a range of high energies bremsstrahlung photon compared to more common few hundred keV sources.
- Find efficient/optimized compromise between fabrication cost and performance

The Team: Role and Relevant Experience

LBNL:

- F. Moretti, E. Bourret, S. Derenzo, D. Perrodin, D. Onken
- Detector panel simulations and synthesis
- Synthesis and characterization of scintillating materials, development of novel materials synthesis

LANL:

- S. Watson and N, Winch
- Testing of small area samples with various sources
- Unique expertise from 30+ years of experience in high energy radiography, imaging techniques related to NNSA missions

RMD:

- V. Nagarkar, M. Marshall, J. Wang, S. Miller, B. Singh
- Synthesis of large area scintillators in microcolumnar shape by Physical Vapor Deposition
- Over 20 years of R&D on radiography panel production and commercialization to both medical and non-medical x-ray imaging communities

Simulation with MCNP (1)

Initial simulations done to define detector designs and inform the experimental part:

Three different designs have been selected from baseline simulations and extensive previous ones from others

Design 1:

- Heavy scintillator (BGO) in W metal grid
- High detection efficiency, but high cost and low resolution

Design 2:

- Plastic scintillator (PVT) in Pb metal grid
- Intermediate detection efficiency, moderate cost, but low resolution

Design 3:

- Thick columnar storage plate on metal intensifier
- Low cost, large areas, relatively high resolution, but low detection efficiency

MCNP Simulation (2)

In-depth simulations on the three designs were done to:

- Understand the design parameters (e.g. best Pb grid wall thickness)
- Evaluate the expected performance as a function of x-ray beam energy
- Inform the experimental/synthesis effort

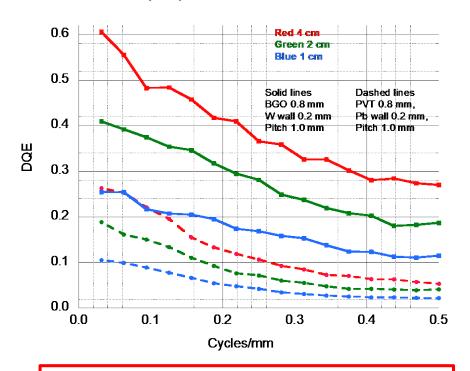
MCNP6.2 Monte Carlo software is used for these simulations to obtain

- The line spread function (LSF) and thus the modulation transfer function (MTF)
- The noise power spectrum (NPS)
- The detection quantum efficiency (DQE): combines 1) the ability to detect x-rays, 2) the spatial resolution, and 3) the image noise as a function of spatial frequency

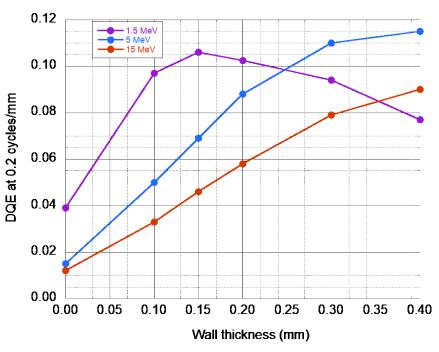
for each design and parameter

$$DQE(f) = \frac{\left(MTF(f)/N_{\text{point}}\right)^{2}}{\left(NPS(f)/N_{\text{flood}}\right)}$$

MCNP6.2 tally F6:E (energy deposited by e⁻/e⁺ in each pixel row) by (1) photoelectric interactions, (2) Compton scattering, (3) electron/positron pair production, (3) positron annihilation photons, and (5) bremsstrahlung interactions. All particles had a weight of one


Optical photon transport efficiency has not been simulated (but planned)

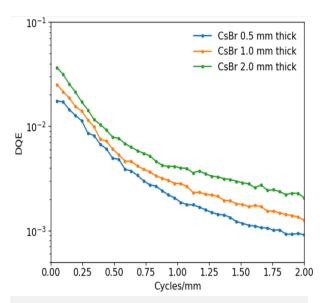
Simulations: Light or Heavy Scintillator in Metal Grid

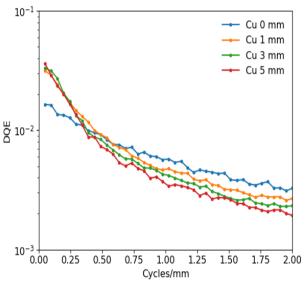

5 MeV X-rays, panel thickness effect on DQE

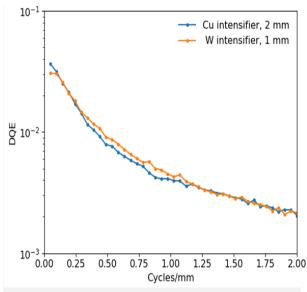
Thicker panels provide almost linear improvement at all spatial frequencies

Note: pixel pitch 1 mm, BGO and PVT 0.8 mm W and Pb wall 0.2 mm

DQE of PVT/Pb at 0.2 cycles/mm vs wall thickness and X-ray energy




0.4 mm wall; low deposition in PVT (36% vol. 5% mass)



ENERGY Simulations: Storage Phosphors with Intensifier Foil

DQE vs CsBr thickness (@5 MeV)

- DQE improves as the thickness of the CsBr phosphor layer is increased.
- 2 mm thickness is good

DQE vs Cu thickness (@5 MeV)

- Slight dependence of DQE on metal intensifier
- For Cu, 1-3 mm is good

DQE vs metal (@5 MeV)

- Metal density has a role but it can be offset by choosing the appropriate thickness of the intensifier
- No need of very dense and expensive metals

Simulations: Conclusions and Outlook

Simulations work and experience from LANL have allowed us to determine three main directions for the experimental work

- 1. Plates using an array of pixels of scintillators:
 - Dense scintillator pixels with reflectors BGO (1 x 1 x 20 mm pixels, separator ~0.1-0.2 mm)
- Light scintillators in heavy metal grid
 Considering developed plastics or glass scintillators
 (1 x 1 x 20 mm pixels, dense metal grid ~0.1-0.2 mm)
- 3. Storage phosphor plate with metal intensifying foils (thicknesses: metal ~1 mm, CsBr ≥2 mm). These plates are currently made of thin films consisting of microcolumnar (about 10-40 µm) phosphor material and could be further improved with a thick film of more transparent structure via tailored vapor deposition.

Cost Consideration

- 1. Plates using an array of pixels of scintillators:
 - Dense scintillator pixels with reflectors
 BGO crystal pixels: >250,000 pixels /per panel
 Labor intensive (pixels cut, polish and assembly)
- 2. Light scintillators in heavy metal grid
 Considering developed plastics or glass scintillators
 - a. Use of existing commercialized grid
 - Both Pb and W are available form commercial sources.
 - b. Determination that PVT can fit the needs
- 3. Storage phosphor plate with metal intensifying foils
 - a. Large area deposition/ thick films
 - c. Intensifying screens are available and inexpensive (metallic plates)

Experimental Studies

Started

On-going

Simulations work and experience from LANL have allowed us to determine three main directions for the experimental work

1. Plates using an array of pixels of scintillators:

Dense scintillator pixels with reflectors BGO (1 x 1 x 20 mm pixels, separator ~0.1-0.2 mm)

2. Light scintillators in heavy metal grid

Considering developed plastics or glass scintillators $(1 \times 1 \times 20 \text{ mm pixels, dense metal grid } \sim 0.1-0.2 \text{ mm})$

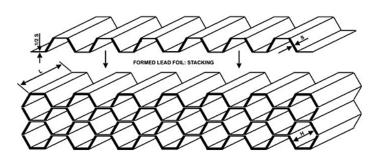
3. Storage phosphor plate with metal intensifying foils

(thicknesses: metal $^{\sim}1$ mm, CsBr ≥ 2 mm).

These plates are currently made of thin films consisting of microcolumnar (about 10-40 μ m) phosphor material and could be further improved with a thick film of more transparent structure via tailored vapor deposition.

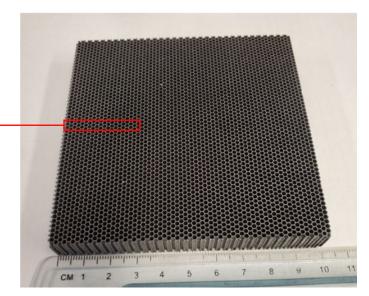
Light Scintillator in Heavy Metal Grid: PVT in Pb

PVT kit BC-490 from Saint-Gobain


Resin: Pre-polymerized plastic phosphor

Catalyst: Unspecified

Solvent: Vinyltoluene monomer


Lead grid (commercially available)

- Corrugated lead grid: Nuclear Medicine collimator with hexagonal channels
- Shaped for uniform wall thickness
- When filled with PVT expected effective imaging with 1-2 cycle/mm resolution

Inside hexagonal side length: 0.88 mm Wall thickness is 0.24 mm

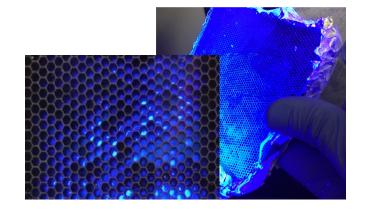
Note: Cast lead grids must be used to avoid detrimental reaction with epoxy

4x4x0.5 inch3

Baseline Experiment

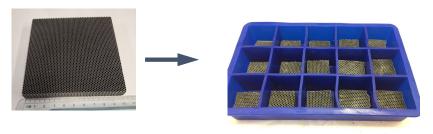
1. Standard polymer chemistry

2. Degassing

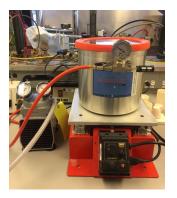


3. Low T polymerization

Defining process parameters for clear, uniform PVT in each Pb channel

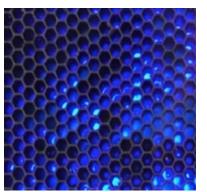

Polymerization takes ~20 days

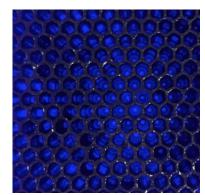
New Protocol Definition and Results



Use of mini grids: 4x4x0.5" grid cleaned and cut in smaller pieces of roughly 1x1x0.5"

Process parameters	Set by manufacturer	To be defined
Product concentrations	Yes	
Room temperature degassing	No	Time Vacuum level
Pouring into grid	No	Timing
Filled grid degassing	No	Time Vacuum level
Polymerization	Guidelines 47°C, 14 days, inert atmosphere	Time Temperature
Final curing	Guidelines 80°C, 8 hours, inert atmosphere	Time Temperature


Controlled processing tools

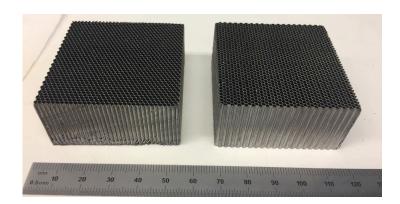


Vacuum chamber on vibrating table

Atmosphere and temperature controlled oven

BEFORE — AFTER

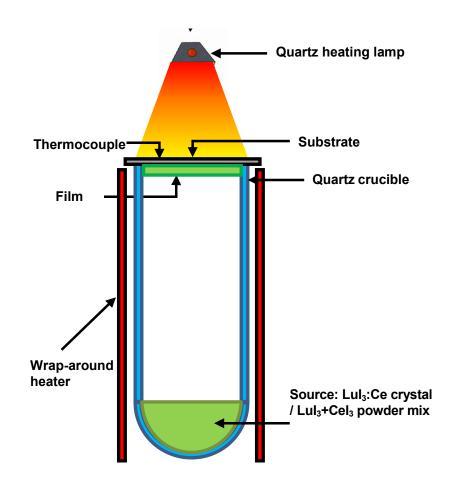



Characterization and Next Steps

First samples characterization in progress:

- X-ray excited luminescence data to be acquired on last sample
- Small imaging set-up installed and now being tested; currently using ¹³⁷Cs and ⁶⁰Co sources
- New larger grids will be ready for imaging tests at LANL in FY21 Q3

Storage Phosphor Plate with Intensifying Foil

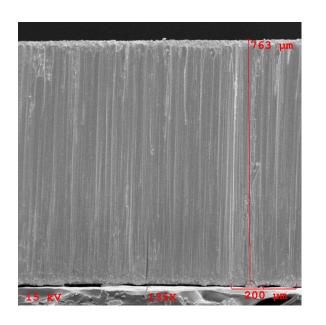


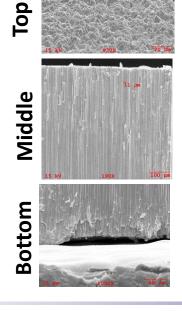
Physical Vapor Deposition of the low-cost well-understood CsBr:Eu storage phosphor:

- Modify by incorporating Eu dopant ions in optimal concentrations
- Deposited by thermal evaporation to produce columnar films
- Columnar structure preserves spatial resolution

Low-hygroscopicity of CsBr:Eu makes for robust screens.

Well known deposition method used in the production of CsI:Tl medical radiography panels

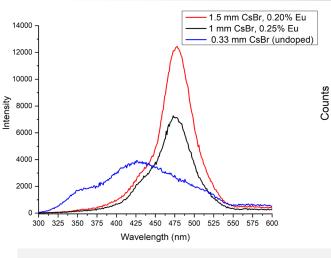

Synthesis at RMD Inc.

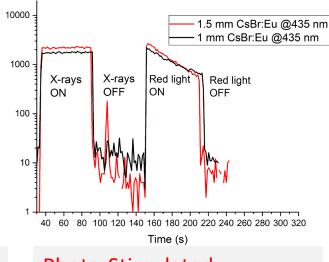


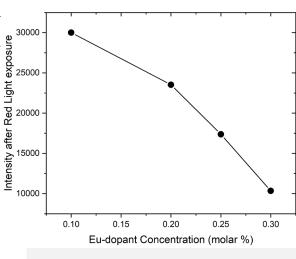
 Optimizing deposition parameters, thickness, dopant concentration, microcolumnar layer uniformity, and adhesion to substrates

Layer structure - Scanning Electron Microscopy

Top view: Densely packed pointy columns, approaching density of CsBr:Eu crystals


Approx. 10 µm column diameter


No amorphous layer at the bottom, good nucleation



Characterization

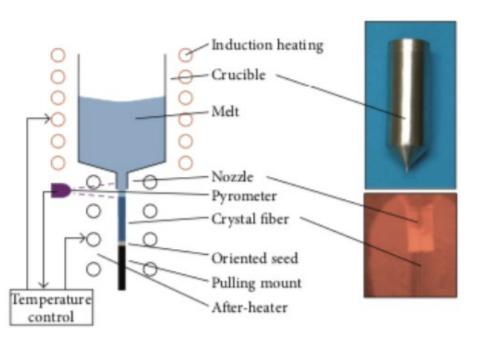
X-ray excited luminescence

- Clear dependence of spectrum upon Eu addition in raw materials
- Signal increases with film thickness
- Grown film response seems to be rather uniform
- Expected sample darkening after irradiation due to population of traps needed for storage ability

Photo-Stimulated Luminescence

- Clear PSL signal during illumination with red LED after X-ray irradiation
- Low afterglow after X-ray irradiation: the traps are stable at room T
- Best PSL excitation wavelength still to be determined

PSL Intensity vs Eu content


- Initial results on Eu concentration optimization
- PSL Intensity decreases by increasing Eu concentration
- Best Eu concentration is still being investigated

Heavy Scintillator in Metal Grid

Fabrication of BGO pixels to be assembled in plates

Micro-pulling down growth of single crystal rods

Less expensive than pixel fabrication from large single crystal boules
Several issues to be solved:

- BGO melt "sticks" to the crucible: difficult growth of uniform sized rods
- Material and shape of the crucible has yet to be determined

Possible alternative:

Direct growth of BGO crystals in a metal grid may be possible, though panel tiling will likely be necessary to contain fabrication costs

Overall Conclusions and Next Steps

Timeline

Initial Project Review

Simulations

Fabrication LBNL

RMD

Testing

Task	Year 1				Year 2				Year 3				Year 4	
Tusk	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q
	1	$\frac{1}{2}$	$\frac{3}{3}$	4	1	$\frac{1}{2}$	$\frac{3}{3}$	4	$\begin{array}{c} \checkmark \\ 1 \end{array}$	$\frac{1}{2}$	3	4	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{2}{2}$
Task 1: Project Baseline														
Review														
Task 2: Simulation of														
response of detector														
material to high-energy X-														
rays														
Task 3: Material selection,														
synthesis and														
characterization at LBNL														
Task 4: Micro-columnar														
growth at RMD														
Task 5: Material testing at														
LANL														
Task 6: Independent														
Assessment														
Task 7: Write final report,														
provides deliverables and														
Final Out Brief					<u> </u>									
Planned	Completed				Admin delays			Extension						

The project is pretty much on-time despite the difficulties encountered during the emergency